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Despite	extraordinary	efforts	to	profile	cancer	genomes,	
interpreting	the	vast	amount	of	genomic	data	in	the	light	of	
cancer	evolution	remains	challenging.	Here	we	demonstrate	
that	neutral	tumor	evolution	results	in	a	power-law	distribution	
of	the	mutant	allele	frequencies	reported	by	next-generation	
sequencing	of	tumor	bulk	samples.	We	find	that	the	neutral	
power	law	fits	with	high	precision	323	of	904	cancers	from		
14	types	and	from	different	cohorts.	In	malignancies	identified	
as	evolving	neutrally,	all	clonal	selection	seemingly	occurred	
before	the	onset	of	cancer	growth	and	not	in	later-arising	
subclones,	resulting	in	numerous	passenger	mutations	that	
are	responsible	for	intratumoral	heterogeneity.	Reanalyzing	
cancer	sequencing	data	within	the	neutral	framework	allowed	
the	measurement,	in	each	patient,	of	both	the	in vivo	mutation	
rate	and	the	order	and	timing	of	mutations.	This	result	
provides	a	new	way	to	interpret	existing	cancer	genomic	data	
and	to	discriminate	between	functional	and	non-functional	
intratumoral	heterogeneity.	

Unraveling the evolutionary history of a tumor is clinically valuable, 
as prognosis depends on the future course of the evolutionary process 
and therapeutic response is mostly determined by the evolution of 
resistant subpopulations1,2. In humans, the details of tumor evolution 
have remained largely uncharacterized, as longitudinal measurements 
are impractical and studies are complicated by between-patient varia-
tion3 and intratumoral heterogeneity (ITH)4,5. Several recent studies 
have begun tackling this complexity6, highlighting patterns of con-
vergent evolution7, punctuated dynamics8 and intricate interactions 
between cancer cell populations9. However, the lack of a rigorous 
theoretical framework able to make predictions on existing data10 
means that results from cancer genomic profiling studies are often 
difficult to interpret. For example, how much of the detected ITH is 
actually functional is largely unknown, also because a rigorous ‘null 
model’ of genomic heterogeneity is lacking. In particular, interpreting 
the mutant allele frequency distribution reported by next-generation  

sequencing is problematic because of the absence of a formal  
model linking tumor evolution to the observed data. 

Here we show that the subclonal mutant allele frequencies of a 
substantial proportion of cancers of different types and from different 
cohorts precisely follow a simple power-law distribution predicted 
by neutral growth. In neutral cancers, all tumor-driving alterations 
responsible for cancer expansion appear to have been present in the 
first malignant cell, and subsequent tumor evolution was effectively 
neutral. We demonstrate that, under neutral growth, fundamental  
parameters describing cancer evolution that have been thus far  
inaccessible in human tumors, such as the mutation rate and the muta-
tional timeline, become measurable. Notably, this approach also allows 
the identification of non-neutral malignancies, in which ongoing  
clonal selection and adaption to microenvironmental niches may have 
a strong role during cancer growth.

RESULTS
Neutral	cancer	growth
Recently, we showed that colorectal cancers (CRCs) often grow as  
a single expansion, populated by a large number of intermixed  
subclones11. Consequently, we expect that, after malignant trans-
formation, individual subclones with distinct mutational patterns 
will grow at similar rates, coexisting within the tumor for long peri-
ods of time without overtaking one another, as a result of the lack 
of stringent selection. Moreover, only a handful of recurrent driver 
alterations have been identified in CRC12, and these are reported to 
be ubiquitous in multiregion sampling11 and stable during cancer pro-
gression13, indicating that they were all present in the ‘first’ cancer cell 
and that subsequent clonal outgrowths are relatively rare. Therefore, 
we hypothesized that cancer evolution may often be dominated by 
neutral evolutionary dynamics.

The dynamics of neutral evolutionary processes have been widely 
studied in the context of molecular evolution and population genet-
ics14–16 as well as in mouse models of cancer17. However, the widely 
held presumption that subclone dynamics in human cancers are 
dominated by strong selection has meant that these ideas have been 
neglected in current studies of cancer evolution.

Motivated by this, here we present a theoretical model describ-
ing the expected pattern of subclonal mutations within a tumor that 
is evolving according to neutral evolutionary dynamics. The model 
postulates that, after the accumulation of a ‘full house’ of genomic 
changes that initiate cancer growth, some cancers expand neutrally, 
generating a large number of passenger mutations that are responsi-
ble for the extensive and common ITH. The parameter-free model is 
applicable to next-generation sequencing data from any solid cancer. 
Here we present the model and, by applying it to large, preexisting 

Identification of neutral tumor evolution across cancer types
Marc J Williams1–3,6, Benjamin Werner4,6, Chris P Barnes2,5, Trevor A Graham1 & Andrea Sottoriva4

1Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University 
of London, London, UK. 2Department of Cell and Developmental Biology, 
University College London, London, UK. 3Centre for Mathematics and Physics 
in the Life Sciences and Experimental Biology (CoMPLEX), University College 
London, London, UK. 4Centre for Evolution and Cancer, The Institute of Cancer 
Research, London, UK. 5Department of Genetics, Evolution and Environment, 
University College London, London, UK. 6These authors contributed equally to 
this work. Correspondence should be addressed to T.A.G. (t.graham@qmul.ac.uk) 
or A.S. (andrea.sottoriva@icr.ac.uk).

Received 18 August 2015; accepted 18 December 2015; published online  
18 January 2016; doi:10.1038/ng.3489

a n a ly s i s

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://dx.doi.org/10.1038/ng.3489
http://www.nature.com/naturegenetics/
http://www.nature.com/naturegenetics/


Nature GeNetics	 VOLUME 48 | NUMBER 3 | MARCH 2016 239

cancer genomic data sets, determine which tumors are consistent with 
neutral growth. When the model applies, we measure new tumor 
characteristics directly from the patient’s data.

Model	derivation
A cancer is founded by a single cell that has already acquired a sub-
stantial mutation burden3: these ‘precancer’ mutations will be borne 
by every cell in the growing cancer and so become ‘public’, or clonal. 
Mutations that occur within different cell lineages remain ‘private’, 
or subclonal, in an expanding malignancy under the absence of 
strong selection. Here we focus on subclonal mutations, as they con-
tain information on the dynamics of cancer growth. We denote the 
number of cancer cells at time t as N(t), with cells dividing at rate λ per 
unit time. During a cell division, somatic mutations occur at rate µ.  
If we consider an average number of π chromosome sets in a cancer 
cell (the ploidy of the cell), we can calculate the expected number of 
new mutations per time interval as 

dM
dt

N t= mpl ( )

Solving this requires integrating over the growth function N(t) in 
some time interval [t0,t] 

M t N t dt
t

t
( ) ( )= ∫mpl

0

Because not all cell divisions may be successful in generating two 
surviving lineages, as a result of cell death or differentiation, we intro-
duce the fraction β of ‘effective’ cell divisions in which both resulting 
lineages survive. In the case of exponential growth, the mean number 
of tumor cells as a function of time is therefore 

N t e t( ) = lb

Substituting into equation (2) gives the explicit solution 

M t e et t( ) = −( )mp
b

lb lb 0

This equation describes the total number of subclonal mutations that 
accumulate within a growing tumor in the time interval [t0,t]. We note 
that, for t0 = 0, equation (4) corresponds to the Luria-Delbrück model, 
which describes mutation accumulation in bacteria18. In our case, this 
equation is of limited use, as none of the parameters µ, λ, β or the 
age of the tumor t can be measured directly in humans. However, we 
do know that, for a new mutation occurring at any time t, its allelic 
frequency (relative fraction) f must be the inverse of the number of 
alleles in the population 

f
N t e t= =1 1

p p lb( )

For example, if a new mutation arises in a tumor of 100 cells, it will 
comprise a cellular fraction of 1/100. In the absence of clonal selection  
(or, indeed, substantial genetic drift), the allelic frequency of a  
mutation will remain constant during expansion, as all cells, with and 
without this mutation, grow at the same rate. In the given example, 
after one generation has elapsed, we will have two cells with that par-
ticular mutation but a total of 200 tumor cells, again yielding a fraction  
of 1/100. This implies that, in the neutral case, tumor age t and muta-
tion frequency f are interchangeable. For example, t0 = 0 in a diploid 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

tumor (π = 2) corresponds to fmax = 0.5 (the expected allelic frequency 
of clonal variants), where 

f
e tmax = 1

0p lb

Substituting t for f  in equation (4) gives an expression for the cumula-
tive number of mutations in the tumor per frequency M(f) 

M f
f f

( )
max

= −






m
b

1 1

thus converging to the solution for expanding populations under neu-
trality obtained using other approaches19–22. Critically, the distribu-
tion M(f) is naturally provided by next-generation sequencing data 
from the bulk sequencing of tumor biopsies and resections, against 
which the model can be tested. The model predicts that mutations 
arising during the neutral expansion of a cancer accumulate following 
a 1/f power-law distribution. In other words, when neutral evolution 
occurs in a tumor, the number of subclonal mutations detected should 
accumulate linearly with the inverse of their frequency. The 1/f noise, 
or ‘pink noise’, is common in nature and is found in several physical, 
biological and economic systems23.

Notably, the coefficient µe = µ/β is the mutation rate per effec-
tive cell division and corresponds to the easily measurable slope of 
M(f). This model therefore provides a straightforward, parameter-free  
method to measure the in vivo mutation rate in a patient’s tumor 
using a single next-generation sequencing sample. We note that the 
results do not depend on the identity of the alterations considered, as 
any genomic alteration (mutation, copy number change or epigenetic  
modification) that changes the dynamics of tumor growth (for example,  
any alteration that is clonally selected) would likely result in  
deviation from the neutral 1/f power law by causing an over- or under-
representation of the alleles in that clone. Hence, this analysis uses  
single-nucleotide variants (SNVs) as ‘barcodes’ to follow clone growth. 
Stochastic simulations of neutral tumor growth support the analytical 
solution in equation (7) (Online Methods).

Identification	of	neutrality	in	colorectal	cancer	evolution
A typical allelic frequency distribution of mutations in a tumor meas-
ured by whole-exome sequencing is shown in Figure 1a (data from 
ref. 11). Considering tumor purity and aneuploidy, mutations with 
high allelic frequency (>0.25) are likely to be public (clonal), whereas 
all others are likely to be subclonal. The same data can be repre-
sented as the cumulative distribution M(f) of subclonal mutations, 
as in equation (7) (Fig. 1b). Remarkably, as represented by the high 
goodness-of-fit measure R2, these data precisely follow the distribu-
tion predicted by the model, indicating that this tumor grew under 
neutral evolutionary dynamics.

We next considered our cohort of seven multiple-sample CRCs11 
and 101 colon adenocarcinomas12 from The Cancer Genome Atlas 
(TCGA) selected for high tumor purity (≥70%) that underwent whole-
exome sequencing (Online Methods). The latter set was separated into 
tumors characterized by chromosomal instability (CIN) and tumors 
with microsatellite instability (MSI). The power law was remarkably 
well supported in both these cohorts, with 38 of 108 (35.1%) of the 
cases reporting a high R2 value ≥0.98 (Fig. 1c). These results con-
firm that, in a large proportion of colon cancers, within-tumor clonal 
dynamics are not dominated by strong selection but rather follow neu-
tral evolution. In particular, a larger proportion of cancers with CIN 
evolved neutrally (31/82; 37.8%) than did cancers with MSI (3/19; 
15.7%) (Fig. 1c), possibly because the latter acquired so many new 

(6)(6)

(7)(7)
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mutations that some were likely under strong selection. Because M(f) 
is a monotonic growing function, a stringent threshold of R2 ≥0.98 
was chosen to prevent overcalling neutrality, but we note that we may 
have therefore misclassified some tumors as non-neutral because of 
limited sequencing depth or low mutation burden. R2 values were 
independent of the mean coverage of mutations, the total number 
of mutations in the sample and the number of mutations within the 
model range (Online Methods). See Supplementary Data Set 1 for a 
summary of the TCGA data used.

Measurement	of	the	mutation	rate	in	colorectal	cancer
Estimating the per-base mutation rate µ per division in human malig-
nancies is challenging because direct measurements are not possible. 
Previous estimates critically depend on assumptions about the dura-
tion of the cell cycle and the growth rate λ, as well as on the total 
mutation burden of the cancer24–26. However, accurate measurement 
of all mutations within a cancer, including heterogeneous subclonal 
variants, is technically unfeasible because most mutations are present 
in very small numbers of cells4. With our approach, it is possible 
to circumvent this issue by measuring the rate of accumulation of 
subclonal mutations represented by the slope of M(f). In the case of 
neutral evolution, this can be done in principle within any (subclonal) 
frequency range, without the need of detecting extremely rare muta-
tions. We estimated the mutation rate in all samples with R2 ≥0.98  
(Fig. 1d) and found that it was more than 15-fold higher in the  
MSI group (median µe = 3.65 × 10−6) than in the CIN group (median 
µe = 2.31 × 10−7; F test, P = 2.24 × 10−8) and our cohort of CRCs 
(median µe = 2.07 × 10−7), of which all but one tumor had CIN11.  
Different mutation types (for example, transitions and transver-
sions) are caused by particular mutational processes27 and thus likely 
occur at different rates; accordingly, we found that C>T mutations 
occurred at median rate µe,C>T = 2.19 × 10−7, a rate nearly tenfold 
higher than that for any other type of mutation (F test, P = 3.13 × 10−3;  
Supplementary Fig. 1a). We stratified according to CIN versus MSI 
status and found that the mutation rate for each mutation type reflected 
the overall mutation rate for the group (Supplementary Fig. 1b).  
The variation in mutation rates within and between subgroups was 
remarkably in line with the variation in estimates of mutation burden 
in colon cancer3. We note that the mutation rate estimate is scaled 

by the (unknown) effective division rate β, which means for exam-
ple that, if only one in 100 cell divisions leads to two surviving off-
spring (β = 0.01), then the mutation rate µ is 100 times lower than the  
effective rate µe reported. The mutation rates of non-neutral cases  
(R2 < 0.98) cannot be estimated, as the model does not fit the dynam-
ics of these tumors.

We examined the effect of copy number changes in the model by per-
forming the analysis using only mutations in diploid regions and found 
highly similar proportions of neutral tumors and mutation rates (Online 
Methods and Supplementary Fig. 2). The validity of the variant calls was 
also corroborated by the consistency of the underlying mutational signa-
ture across a range of allelic frequencies; hence, the results are unlikely to 
have been influenced by sequencing errors (Supplementary Fig. 3).

Frequent selection events should induce a higher number of mis-
sense and nonsense mutations than expected by chance, whereas under 
neutrality we expect the same rate of silent and non-silent mutations. 
To test this, we contrasted the estimated rate of synonymous mutations 
(unlikely to be under selection) with the rate of missense and nonsense 
mutations (liable to experience selection). Although the latter were more 
common than the former, after adjustment for the number of potential 
synonymous and nonsynonymous sites in the exome, the two rates were 
equivalent (Supplementary Fig. 4), consistent with neutral evolution.

Neutral	evolution	in	coding	and	noncoding	regions
We next tested whether the signature of neutral evolution could be 
detected across the entire genome, not just in coding regions. To do 
this, we analyzed 78 gastric cancers from a recent study28 subjected 
to high-depth whole-genome sequencing and preselected for high 
tumor purity (≥70%). The large number of mutations detected by 
whole-genome sequencing accumulated precisely as predicted by the 
model (example in Fig. 2a,b), indicating neutral evolution in 60 of 78 
(76.9%) cases (Fig. 2c). A smaller proportion of tumors with MSI were 
neutral (3/10; 30%) than microsatellite-stable (MSS) tumors (57/68; 
83.8%), in line with the observation in CRC. A tumor was consist-
ently classified as neutral independently of whether all SNVs or only 
noncoding SNVs were used to perform the classification (Fig. 2c, 
Venn diagram), whereas, because of the limited number of mutations 
available in the exome coupled with the strict R2 = 0.98 threshold to 
call neutrality, fewer tumors were identified as neutral using exonic 
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Figure 1 Neutral evolution is common in 
colon cancer and allows measurement of the 
mutation rate in each tumor. (a) The output of 
next-generation sequencing, such as whole-
exome sequencing, can be summarized as a 
histogram of mutant allele frequencies, here 
for sample TB. Considering purity and ploidy, 
mutations with relatively high frequency 
(>0.25) are likely to be clonal (public), whereas 
low-frequency mutations capture the tumor 
subclonal architecture. (b) The same data can 
be represented as the cumulative distribution 
M(f) of subclonal mutations. This distribution 
was found to be linear with 1/f, precisely as 
predicted by the neutral model. (c) The R2 
goodness-of-fit measure for our CRC cohort  
(n = 7) and the TCGA colon cancer cohort  
(n = 101) grouped as having CIN or MSI 
confirmed that neutral evolution is common 
(38/108; 35.1% of samples with R2 ≥0.98). 
The red line indicates the R2 = 0.98 threshold 
for discriminating neutral from non-neutral 
tumors. (d) Measurements of the mutation rate showed that the groups with CIN had a median mutation rate of µe = 2.31 × 10−7, whereas tumors with 
MSI had a 15-fold higher rate (median µe = 3.65 × 10−6; F test, P = 2.24 × 10−8), as predicted on the basis of their deficiency in DNA mismatch repair.
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SNVs alone. Notably, every case was verified as neutral by at least two 
different variant sets. These results suggest that neutral evolution can 
be robustly assessed from mutations anywhere in the genome.

Mutation rate analysis of the neutrally evolved gastric cancers  
(Fig. 2d) showed that cancers with MSI had a more than fourfold higher 
mutation rate (µe = 3.30 × 10−6) than MSS tumors (µe = 7.82 × 10−7; F test,  
P = 1.35 × 10−4). The results were robust to copy number changes 
when the analysis was performed using only variants in diploid 
regions (Supplementary Fig. 5). The mutational signature of the 
variant calls for this cohort was also consistent across the frequency 
spectrum (Supplementary Fig. 6). Synonymous versus nonsynon-
ymous mutation rates were also consistent with neutral evolution 
(Supplementary Fig. 7). See Supplementary Data Set 2 for a sum-
mary of the data from Wang et al. used.

Neutral	evolution	across	cancer	types
We then applied the neutral model to a large pan-cancer cohort 
of 819 exome-sequenced cancers from 14 tumor types from 
the TCGA Consortium (which included the 101 colon cancers  

previously examined). All of these samples had been preselected 
for high tumor purity (≥70%). The fit of the model was remark-
ably good across cancer types (Fig. 3a), with 259 of 819 (31.6%) 
cases showing R2 ≥0.98. We found that neutral evolution seemed 
more prominent in some tumor types, such as stomach (validat-
ing the whole-genome sequencing analysis), lung, bladder, cervical 
and colon cancers. Other tumor types showed a consistently poorer 
fit, indicating that the clonal dynamics in these malignancies were  
typically not neutral, such as in renal cancer, melanoma, pancreatic  
cancer, thyroid cancer and glioblastoma. Consistent with these 
results, non-neutral renal carcinoma has been shown to display 
convergent evolution in spatially disparate tumor regions driven 
by strong selective forces7, whereas the same phenomenon was not 
found in more neutral lung cancer29,30. Other tumor types displayed 
mixed dynamics, with some cases that were characterized by neutral 
evolution and some that were not. We note that a proportion of 
melanoma samples in this cohort are derived from regional metas-
tases and not primary lesions, and this could potentially explain the 
lack of neutral dynamics observed.
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Figure 2 Neutral evolution across the whole 
genome of gastric cancers. (a) A large number 
of coding and noncoding mutations can be 
identified using whole-genome sequencing.  
(b) All detected mutations precisely accumulate 
as 1/f following the neutral model in this 
example. (c) Neutral evolution is very common 
in gastric cancer, with 60 of 78 (76.9%) 
samples showing goodness of fit for the neutral 
model R2 ≥ 0.98 (red line). This was consistent 
using all, exonic or noncoding subclonal 
mutations. The same tumors were identified 
as neutral by all three methods, although 
limitations in detecting neutrality were present 
when considering exonic mutations because  
of the limited number of variants. WGS,  
whole-genome sequencing. (d) Mutation  
rates were more than four times higher in MSI 
(µe = 3.30 × 10−6) than in MSS (µe = 7.82 × 10−7)  
tumors (F test, P = 1.35 × 10−4), consistent with 
the underlying biology.
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Mutation rate analysis on the neutral cases showed differences of 
more than one order of magnitude between tumor types (Fig. 3b). The 
highest mutation rates were observed in lung adenocarcinoma (median 
µe = 6.79 × 10−7) and lung squamous cell carcinoma (median µe =  
5.61 × 10−7), and the lowest rates were seen in low-grade glioma 
(median µe = 9.22 × 10−8) and prostate cancer (median µe = 1.04 × 10−7).  
We stratified the mutation rates into different mutational types 
(Supplementary Fig. 8) and found that C>A mutations occurred 
at a significantly higher rate in lung cancers (lung adenocarcinoma,  
P = 2.72 × 10−16; lung squamous cell carcinoma, P = 3.90 × 10−4),  
consistent with their causation by tobacco smoke27. C>T mutation 
rates were most consistent across cancer types, likely because of 
their association with replicative errors as opposed to being caused 
by a particular stochastically arising defect in DNA replication  
or repair27.

These results demonstrate that within-tumor clonal dynamics can 
be neutral, and the classification of tumors on the basis of neutral 
versus non-neutral growth dynamics leads to new measurements of 
fundamental tumor biology. See Supplementary Data Set 1 for a 
summary of the TCGA data used.

In silico	validation	of	the	neutral	model
To assess the different inherent sources of noise in next-generation 
sequencing data (contamination from normal tissue, limited sequenc-
ing depth and tumor sampling), we designed a stochastic simulation of 
neutral growth that produced synthetic next-generation sequencing data 
from bulk samples (Online Methods). The simulations produced realistic- 
looking synthetic next-generation sequencing data (Supplementary  
Fig. 9) with minimal assumptions and under a range of different  
scenarios for tumor growth dynamics (variable low mutation rate and 
variable number of clonal mutations) and sources of assay noise (normal 
contamination in the sample, sequencing depth and detection limit). 
For each of these potentially confounding factors, we were able to fit our 
neutral model to the synthetic next-generation sequencing data and accu-
rately recover both the underlying neutral dynamics and the mutation 
rate (Supplementary Fig. 10). We also validated the prediction that M(f) 
would deviate from the neutral power law in the presence of emerging 
subclones with a higher fitness advantage (Supplementary Fig. 11a,b), 
as well as in the case of a mixture of subclones (as observed in ref. 31) 
emerging either by means of clonal expansions triggered by selection or 
segregating microenvironmental niches (Supplementary Fig. 11c–f). 
Variation in mutation rate between subclones also caused a deviation 
from neutrality (Supplementary Fig. 11g,h). These results support the 
reliability of the conservatively high R2 threshold used to call neutrality.

Mutational	timelines
Under neutral evolution, it is possible to estimate the size of the tumor 
when a mutation with frequency f arose using equation (5) 

N t
f

( ) = 1
p

The decomposition of the mutational timeline for two illustrative 
cases—sample TB from ref. 11 and sample TCGA-AA-3712 from ref. 
12—is shown in Figure 4a,b. Previous estimates of mutational time-
lines relied on cross-sectional data32–35, which are compromised by 
the extensive heterogeneity, whereas multiregion profiling approaches 
are more accurate but are also more expensive and laborious7,36,37. 
Using our formal model of cancer evolution, the timeline information 
becomes accessible from routinely available genomic data. We found 
that classical CRC driver alterations, such as in the APC, KRAS and 
TP53 genes, indeed seemed to be present in the first malignant cell 
(likely because they accumulated during previous neoplastic stages). 
This finding agrees with what we previously reported using single-
gland mutational profiling where all these drivers, when present, 
were found in all glands11. However, we also found that, when we 
considered a more extended list of putative driver alterations, many 
occurred during the neutral phase of tumor growth, suggesting that 
the selective advantage conferred by a putative driver alteration may 
be context dependent, as demonstrated in a Trp53 mouse model38.

DISCUSSION
Understanding the evolutionary dynamics of subclones within human 
cancers is challenging because longitudinal observations are unfea-
sible and the genetic landscape of cancer is highly dynamic, leading 
to genomic data that are hard to interpret39. In particular, complex, 
nonlinear evolutionary trajectories have been observed, such as punc-
tuated evolution and karyotypic chaos8,39,40. Here we have presented a 
formal law that predicts mutational patterns routinely reported in the 
next-generation sequencing of bulk cancer specimens. Our analysis 
of large independent cohorts using this framework shows that cancer 
growth often seems to be dominated by neutral evolutionary dynam-
ics, an observation that is consistent across 14 cancer types. Under 
neutrality, the clonal structure of a tumor is expected to have a fractal 
topology characterized by self-similarity (Fig. 5). As the tumor grows, 
a large number of cell lineages are generated, and ITH therefore rap-
idly increases while the allele frequency of the new heterogeneous 
mutations quickly decreases because of expansion. This implies that 
sampling in different parts of the tree leads to the detection of distinct 
mutations that all show the same 1/f distribution. Clonal mutations 

(8)(8)
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Figure 4 Reconstruction of the mutational timeline 
in two patients. The allelic frequency of a mutation 
within the tumor predicts the size of the tumor 
when the mutation occurred. (a,b) Deconvolution of 
the mutational timeline is illustrated for samples TB 
(a) and TCGA-AA-3712 (b). Whereas established 
CRC driver alterations (in APC, KRAS and TP53) 
seem to be present from the first malignant cell, 
several recurrent putative drivers not yet validated 
were present after malignant seeding, despite 
the underlying neutral dynamics. This suggests 
that some of these candidate alterations may not 
be fundamental drivers of growth in all cases. 
Confidence intervals were calculated using a 
binomial test on the number of variant reads versus 
the depth of coverage for each mutation.
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found in a sample (not considered in the model) belong to the most 
recent common ancestor in the tree.

We note that some cancers were dominated by neutral evolution 
whereas others were not. In non-neutral tumors, strong selection, 
microenvironmental constraints and non–cell autonomous effects41 
may have a key role. Notably, this formalization represents the 
null model of cancer within-clone heterogeneity that can be used 
to identify cases in which complex, non-neutral dynamics occur 
and to discriminate between functional and non-functional ITH. 
Furthermore, we speculate that neutral evolutionary dynamics may 
be favored by the cellular architecture of the tumor (for example, 
glandular structures that limit the effects of selection) and/or the 
anatomical location of the malignancy (for example, a lumen ver-
sus a highly confined space), as well as the presence of potentially 
selective microenvironmental features of the tumor such as hypoxic 
regions. Despite the evidence for a lack of natural selection during 
malignant growth, eventual treatment is likely to change the rules of 
the game and strongly select for treatment-resistant clones42. Clones 
with driver alterations underlying treatment resistance that were not 
under selection during growth may expand as a result of new selective 
pressures introduced by therapy. The same may happen in the context 
of the purported evolutionary bottleneck preceding metastatic dis-
semination. Notably, this reasoning highlights how ‘drivers’ can only 
be defined within a context and so the same driver alteration can be 
neutral in a certain microenvironmental context (for example, in the 
absence of treatment) and not neutral in another (for example, during 
treatment). Moreover, we predict that, if a tumor is characterized by 
different microenvironmental niches but still presents as neutral, it 
is likely that adaptation will be driven by cancer cell plasticity rather 
than clonal selection. Cell plasticity is hard to study in cancer because 
it implies a change in the cell phenotype that is not caused by inherit-
able genomic variation. Thus, this phenomenon has been so far largely 
neglected in cancer. As neutrality can be used as the null model with 
which to identify clonal selection, this model facilitates the study 
of adaptation through plasticity directly in human malignancies.  

Furthermore, it is important to note that, because of the intrinsic 
detection limits of sequencing technologies, it is possible to explore 
only the early expansion of cancer clones (Fig. 5), and the dynamics 
of extremely small clones may remain undetected.

Notably, the realization that within-tumor clonal dynamics can 
be neutral means that the in vivo mutation rate per division and the 
mutational timeline—factors that have a key role in cancer evolution, 
progression and treatment resistance—can be measured directly from 
patient data. These measurements can be performed in a patient-
specific manner and so may be useful for prognostication and the 
personalization of therapy. Recognizing that the growth of a neoplasm 
can often be dominated by neutral dynamics provides an analytically 
tractable and rigorous method to study cancer evolution and gain 
clinically relevant insight from commonly available genomic data.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE	METHODS
Data analysis. The processing of exome sequencing data from ref. 11 and 
TCGA12 involved variant calling on matched tumor-normal pairs using Mutect43. 
A mutation was considered if the depth of coverage was ≥10 and at least three 
reads supported the variant. Mutations that aligned to more than one genomic 
location were discarded. The whole-genome sequencing gastric cancer data28 
were processed using VarScan2 (ref. 44), with the minimum depth of coverage for 
a mutation being 10× and at least three reads supporting the variant. Non-CRC 
samples in the TCGA data had mutations called using Mutect according to the 
pipeline described in ref. 45. MSI in the TCGA colon cancer samples was called 
using MSIsensor46. Annotation was performed with ANNOVAR47.

To fit the neutral model to allele frequency data, we considered only  
variants with an allele frequency in the range [fmax,fmin] corresponding to 
[t0,t] in equation (2). The low boundary fmin reflects the limit for the reliable 
detectability of low-frequency mutations in next-generation sequencing data, 
which is on the order of 10% (ref. 43). The high boundary fmax is necessary 
to filter out public mutations that were present in the first transformed cell.  
In the case of diploid tumors clonal mutations are expected at fmax = 0.5 (muta-
tions with 50% allelic frequency are heterozygous public or clonal), in the case 
of triploid tumors this threshold drops to 0.33 and in the case of tetraploid 
neoplasms it drops to 0.25. For all samples, we used a boundary of [0.12,0.24] 
to account only for reliably called subclonal mutations and tumor purity in the 
samples. All the samples considered in this study were reported to have tumor 
purity ≥70% and a minimum of 12 reliably called private mutations within the 
fit boundary. Once these conditions were met in a sample, equation (7) was 
used to perform the fit as illustrated in Figures 1b and 2b. In particular, for x 
= 1/f, equation (7) becomes a linear model with slope µ/β and intercept −µ/(β 
fmax). We exploited the intercept constraint to perform a more restrictive fit 
using the model y = m(x − 1/fmax) + 0.

Copy number changes (allelic deletion or duplication) can alter the fre-
quency of a variant in a manner that is not described by equation (7). We 
assessed the impact of copy number alterations (CNAs) on our estimates of the 
mutation rate in the TCGA colorectal cancer samples by using the paired publi-
cally available segmented SNP array data to exclude somatic mutations that fell 
within regions of CNA. CNAs were identified as having an absolute log R ratio 
>0.5, and model fitting was performed only on diploid regions of the genome. 
In the gastric cancer cohort, regions with copy number changes were identified 
using Sequenza48 and removed from the analysis. Mutation rates were adjusted 
to the size of the resulting diploid genome. The robustness of our analysis to 
copy number changes is demonstrated in Supplementary Figures 2 and 5.  
R2 values were independent from the mean coverage of mutations (P = 0.32), the 
total number of mutations in the sample (P = 0.40), the mutation rate (P = 0.11)  
and the number of mutations within the model range (P = 0.65). The sequenc-
ing data from our previous publication11 are accessible via the ArrayExpress 
database under accession E-MTAB-2247. The TCGA data are accessible via the 
database of Genotypes and Phenotypes (dbGaP) under accession phs000178.
v9.p8. Whole-genome sequencing gastric cancer data are accessible through 
the European Genome-phenome Archive (EGA) database under accession 
EGAS00001000597.

Stochastic simulation of tumor growth. To further validate our analytical 
model and to test robustness to the noise in next-generation sequencing data, 
we developed a stochastic simulation of tumor growth and accumulation of 
mutations that allowed us to generate synthetic data sets. The model was writ-
ten and analyzed in the Julia programming language (http://julialang.org/). We 
then applied the analytical model to the simulated data to confirm that sources 
of noise in next-generation sequencing data did not considerably influence 
our results. In particular, we verified that we could reliably extract the input 
parameters of the simulation (namely, the mutation rate) from ‘noisy’ syn-
thetic data. Confounding factors in the data included normal contamination, 
sampling effects, the detection limit of next-generation sequencing mutation 
calling and variable read depth. We simulated a tumor using a branching proc-
ess with discrete generations, beginning with a single ‘transformed’ cancer cell 
that gives rise to the malignancy. Under exponential growth, the population 
at time t will be given by 

N t R et R t( ) ln( )= = (9)(9)

where R is the average number of offspring per cell and the time t is in units 
of generations. We will consider primarily the case when R = 2 (a cell always 
divides into two cells), but we will also consider values <2, noting that R must be 
greater than 1 to have growth. At each division, cells acquire new mutations at a 
rate µ, and we assume that every new mutation is unique (infinite sites approxi-
mation). The number of mutations acquired by a daughter cell at division  
is a random number drawn from a Poisson distribution with mean µ. Each 
cell in the population is defined by its mutations and its ancestral history (by 
recording its parent cell). Using this information, we can then reconstruct the 
history of the whole tumor and, crucially, calculate the variant allele frequency 
of all mutations in the population. To relate the discrete simulation to the 
continuous analytical model, we will now rederive equation (7) in the context 
of our computational model. As we simulate a growing tumor using discrete 
generations, both the mutation rate µ and per capita growth rate λ = ln(R) are 
in units of generations. For an offspring probability distribution P = (p0,p1,p2) 
where pk = P(number of offspring = k), the average number of offspring R is 
simply given by the expected value of P 

R P p p= = +E[ ] 1 22

For example, for R = 2, we have P = (p0 = 0,p1= 0,p2 = 1). By choosing different 
offspring probability distributions, we can easily modulate the growth rate. We 
note that we are now expressing both µ and λ as rates per generation rather 
than probabilities (all rates are scaled by units of generation). This allows us 
to write the growth function as N(t) = exp(λt) with λ = ln(R). Proceeding as in 
the main text, our cumulative number of mutations with an allelic frequency 
f is therefore 

M f
f f

( )
max

= −






m
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1 1

Therefore, when fitting the model to our stochastic simulation, we extract µ/λ 
from the linear fit, making it straightforward to compare the simulation with 
the analytical model.

Next-generation sequencing data only capture a small fraction of the vari-
ability in a tumor, as the resolution is often limited to alleles with a frequency 
of >10% because of sequencing depth and limitations in mutation calling.  
To account for this, we employ a multistage sampling scheme in our simula-
tions. For all simulations reported here, we grow the tumor to a size of 1,024 
cells, which gives a minimum allele frequency of ~0.1%, considerably lower 
than the 10% attainable in next-generation sequencing data. After growing 
the tumor and calculating the variant allele frequency for all alleles, we take a 
sample of the alleles in the population, noting that we are assuming that the 
population is well mixed and has no spatial structure. We can vary the per-
centage of alleles we sample, thus allowing us to investigate the effect of the 
depth of sequencing on our results. As we know the true allelic frequency in 
the simulated population, we can use the multinomial distribution to produce 
a sample of the ‘sequenced’ alleles, where the probability of sampling allele i is 
proportional to its frequency. The probability mass function is given by 

f x n p n
x x

p x x n
k
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i
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1 1…

where xi is the sampled frequency of allele i, n is the number of trials (the 
chosen percentage of alleles sampled) and pi is the probability of sampling 
allele i (which has frequency ρi in the original population) 

pi
i

jj
k=
=∑
r

r1

The variant allele frequency (VAF) is therefore given by 

VAF = x
N
i

i

where Ni is the total number of sampled cells from which every sampled allele 
is derived. As we are assuming a constant mutation rate µ, we can assume 
that the percentage of alleles sampled comes from an equivalent percentage 
of cells. However, to include an additional element of noise that resembles  
the variability of read depth, we calculate a new Ni for each allele i that 

(10)(10)

(11)(11)

(12)(12)

(13)(13)

(14)(14)
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approximates the read depth. For a desired ‘sequencing’ depth D, we calcu-
late the corresponding percentage of the population we need to sample that 
will give us our desired depth. For example, for a desired depth of 100× from  
a population of 1,000 cells, we would need to sample 10% of the population.  
To include some variability in depth across all alleles, we use Binomial  
sampling so that Ni is a distribution with mean D.

Contamination from non-tumor cells in next-generation sequencing  
results in variant allele frequencies being underestimated. To include this effect 
in our simulation, we can modify our Ni by an additional fraction ε, the per-
centage of normal contamination. Our variant allele frequency calculation 
thus becomes 

VAF =
+( )

x
N

i

i 1 e

We also include a detection limit in our sampling scheme; we only include 
alleles that have an allelic frequency greater than a specified limit in the origi-
nal tumor population.

To include the effects of selection in the simulation, we introduce a second 
population, where on average each cell has a greater number of offspring than 
a cell from the first population. To model this, our second population has a 
modified offspring probability distribution: the previous offspring probability 
distribution was P = (p0,p1,p2) and the offspring probability distribution of 
our second, fitter population is defined as Q = (q0,q1,q2), where q2 > p2. The 
selective advantage of a population s will be given by the ratio of the expected 
number of offspring 

1 2
2

1 2

1 2
+ = = +

+
s Q

P
q q
p p

E
E
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Therefore, given P and a desired selective advantage s, we can easily calculate 
the offspring probability distribution of a fitter clone, Q.

Previous studies have detected the presence of mixtures of subclones in 
breast cancer samples that emerged by means of clonal expansions, thus gen-
erating multiple subclonal clusters in the data31. We also used our computa-
tional model of next-generation sequencing data to produce similar synthetic 
data by mixing different clonal clusters and verified that, in this scenario  
(a model of differential selective pressure across subclones), the power  
law does not hold. The simulation code is available at https://github.com/
andreasottoriva/neutral-tumor-evolution.

Simulation results. From the simulated data, we produced histograms of the 
allelic frequency and calculated M(f) to fit the analytical model. We used the 
same frequency range as applied to empirical data [fmax,fmin] = [0.12,0.24]. 
Equivalent plots to those in Figure 1a,b but with simulated data are shown 
in Supplementary Figure 9a,b. These demonstrate that we are able to accu-
rately model the allelic distribution of next-generation sequencing data with 
our simple neutral model of tumor growth. We also show the effect of a low 
mutation rate (Supplementary Fig. 9c), a large number of clonal mutations 
(Supplementary Fig. 9d), 30% contamination in the sample (Supplementary 
Fig. 9e) and a low detection limit (Supplementary Fig. 9f). Notably, by fitting 
the analytical model to the simulated data, we can recover the input mutation 
rate with high accuracy (Supplementary Fig. 9g, 10,000 equivalent simula-
tions). The mean percentage error from the fit is 1.1%. We also see uniformly 
high R2 values across all simulations (Supplementary Fig. 9h).

To test the robustness of the model to the number of clonal mutations, the 
detection limit and the amount of normal contamination, we ran 10,000 simu-
lations across the spectrum of these parameters (Supplementary Fig. 10a,b). 
We accurately recover (to within 15%) the mutation rate for 95% of simulations 
across different numbers of clonal mutations and different detection limits. 
In contrast, we found that levels of normal contamination above 30% con-
siderably influence the parameter estimations of the model: hence, our deci-
sion of only considering samples with ≥70% tumor content (Supplementary 
Fig. 10c). Indeed, when normal contamination is above 30%, the clonal peak 
in the allelic frequency distribution interferes significantly with our chosen 
cumulative sum limit (fmax = 0.24), thus affecting our results. Nevertheless, 
the estimates are within a factor of 2 for normal contamination of up to 50%, 
which we consider an acceptable level of accuracy. When we consider normal 

contamination ε directly in our analytical model, the allelic fraction of a new 
mutation becomes 
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showing that normal contamination alters the measurement of mutation by a 
factor of 1/(1 + ε): much lower than one order of magnitude. Furthermore, if 
normal contamination could be estimated accurately from histopathological 
scoring or from reliable bioinformatics tools, we would be able to correct the 
frequency of variants in the data and thus rescue our ability to correctly esti-
mate parameters with up to 40–45% normal contamination (Supplementary 
Fig. 10d). We also tested the model with varying read depths and mutation 
rates. We find that either a low mutation rate or a low read depth results in 
a higher proportion of poor model fits (R2 <0.98) and inaccurate or higher 
variance in mutation estimates (Supplementary Fig. 10e–h). It is therefore 
possible that because of our stringent neutrality criteria the true proportion of 
tumors that are dominated by neutral dynamics is higher than reported; related 
to this, our gastric cancer cohort covers the whole genome (greater mutation 
rate per division) and has mean depth of coverage >90×, which may explain in 
part why we see a greater proportion of gastric cancers classified as neutral.

Additionally, we tested the model with simulations using a range of dif-
ferent probability distributions for the number of surviving offspring at each 
cell division. We simulated a growing tumor 10,000 times with five differ-
ent offspring probability distributions and then reported the distributions of 
the fitted parameters. As λ decreases, the distribution of mutation estimates 
becomes wider (Supplementary Fig. 10i,j), and we see an increase in poorly 
fitted models (larger number of models with R2 <0.98). Again, this suggests 
that tumor growth may still be neutral even when we classify a tumor as non-
neutral because of a poor R2 value. Hence, our underestimation of the number 
of neutral cases may be largely due to a low proportion of cells that success-
fully produce two viable offspring (the β term in equation (7)) rather than the 
presence of selection.

By introducing a second, fitter population early during tumor growth, we 
show that the fitter clone causes an over-representation of variants at high 
frequency as compared to what we would expect from our null model of 
neutral tumor growth. This causes the cumulative distribution to bend and 
deviate from the linear relationship predicted by neutral growth, as shown 
in Supplementary Figure 11a,b. This is because an over-representation  
of variants at high frequency, as compared to what we would expect from 
our null model, is caused by clonal selection of the fitter clone, but we note  
that we do not know what caused this increase (it could be a point mutation, 
chromosomal aberration or change in environmental pressures, for example).  
In other words, some passenger mutations are just in the ‘right clone  
at the right time’ and become over-represented in the tumor when that  
‘right’ clone expands.

We also show that having multiple subclones that arose by means of clonal 
expansion, thus producing multiple clonal ‘clusters’, produces a deviation  
from the linear relationship we predict (Supplementary Fig. 11c–f), as 
does having a marked increase in the mutation rate early in tumor growth 
(Supplementary Fig. 11g,h).
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